Baekjoon 13460 구슬 탈출 2 JAVA
13460번: 구슬 탈출 2 첫 번째 줄에는 보드의 세로, 가로 크기를 의미하는 두 정수 N, M (3 ≤ N, M ≤ 10)이 주어진다. 다음 N개의 줄에 보드의 모양을 나타내는 길이 M의 문자열이 주어진다. 이 문자열은 '.', '#', 'O', 'R', 'B' www.acmicpc.net 문제 스타트링크에서 판매하는 어린이용 장난감 중에서 가장 인기가 많은 제품은 구슬 탈출이다. 구슬 탈출은 직사각형 보드에 빨간 구슬과 파란 구슬을 하나씩 넣은 다음, 빨간 구슬을 구멍을 통해 빼내는 게임이다. 보드의 세로 크기는 N, 가로 크기는 M이고, 편의상 1×1크기의 칸으로 나누어져 있다. 가장 바깥 행과 열은 모두 막혀져 있고, 보드에는 구멍이 하나 있다. 빨간 구슬과 파란 구슬의 크기는 보드에서 1×1크..
2022. 4. 25.
Baekjoon 4948 베르트랑 공준 JAVA
4948번: 베르트랑 공준 베르트랑 공준은 임의의 자연수 n에 대하여, n보다 크고, 2n보다 작거나 같은 소수는 적어도 하나 존재한다는 내용을 담고 있다. 이 명제는 조제프 베르트랑이 1845년에 추측했고, 파프누티 체비쇼 www.acmicpc.net 문제 베르트랑 공준은 임의의 자연수 n에 대하여, n보다 크고, 2n보다 작거나 같은 소수는 적어도 하나 존재한다는 내용을 담고 있다. 이 명제는 조제프 베르트랑이 1845년에 추측했고, 파프누티 체비쇼프가 1850년에 증명했다. 예를 들어, 10보다 크고, 20보다 작거나 같은 소수는 4개가 있다. (11, 13, 17, 19) 또, 14보다 크고, 28보다 작거나 같은 소수는 3개가 있다. (17,19, 23) 자연수 n이 주어졌을 때, n보다 크고,..
2022. 4. 25.
Baekjoon 10815 숫자 카드 JAVA
10815번: 숫자 카드 첫째 줄에 상근이가 가지고 있는 숫자 카드의 개수 N(1 ≤ N ≤ 500,000)이 주어진다. 둘째 줄에는 숫자 카드에 적혀있는 정수가 주어진다. 숫자 카드에 적혀있는 수는 -10,000,000보다 크거나 같고, 10, www.acmicpc.net 문제 숫자 카드는 정수 하나가 적혀져 있는 카드이다. 상근이는 숫자 카드 N개를 가지고 있다. 정수 M개가 주어졌을 때, 이 수가 적혀있는 숫자 카드를 상근이가 가지고 있는지 아닌지를 구하는 프로그램을 작성하시오. 입력 첫째 줄에 상근이가 가지고 있는 숫자 카드의 개수 N(1 ≤ N ≤ 500,000)이 주어진다. 둘째 줄에는 숫자 카드에 적혀있는 정수가 주어진다. 숫자 카드에 적혀있는 수는 -10,000,000보다 크거나 같고, 1..
2022. 4. 25.
Baekjoon 10836 여왕벌 JAVA
10836번: 여왕벌 입력의 첫 줄에는 격자칸의 가로와 세로 크기 M(2 ≤ M ≤ 700)과 날짜 수 N(1 ≤ N ≤ 1,000,000)이 자연수로 주어진다. 첫날 아침의 애벌레 크기는 모두 1이므로 입력에 주어지지 않는다. 다음 N개의 www.acmicpc.net 문제 크기가 M×M인 격자 형태의 벌집이 있다. 이 벌집의 각 칸에는 여왕벌이 될 애벌레들이 한 마리씩 자라고 있다. 격자칸의 좌표계를 다음과 같이 설정한다. 제일 왼쪽 위 칸의 좌표는 (0,0)이다. 그 아래쪽 칸들의 좌표는 순서대로 (1,0), (2,0), ...등이다. 좌표가 (i,0)인 칸의 오른쪽 칸들의 좌표는 순서대로 (i, 1), (i,2), ... 등이다. 애벌레들은 매일 에너지를 모아서 정오(낮 12시) 에 한번 자라는데,..
2022. 4. 25.
Baekjoon 10826 피보나치 수 4 JAVA
10826번: 피보나치 수 4 피보나치 수는 0과 1로 시작한다. 0번째 피보나치 수는 0이고, 1번째 피보나치 수는 1이다. 그 다음 2번째 부터는 바로 앞 두 피보나치 수의 합이 된다. 이를 식으로 써보면 Fn = Fn-1 + Fn-2 (n ≥ 2)가 www.acmicpc.net 문제 피보나치 수는 0과 1로 시작한다. 0번째 피보나치 수는 0이고, 1번째 피보나치 수는 1이다. 그 다음 2번째 부터는 바로 앞 두 피보나치 수의 합이 된다. 이를 식으로 써보면 Fn = Fn-1 + Fn-2 (n ≥ 2)가 된다. n=17일때 까지 피보나치 수를 써보면 다음과 같다. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 n이 주어..
2022. 4. 25.